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The Monte Carlo method is applied to polymer crystals of idealized linear chain molecules of 30 carbon 
atoms, and the unharmonic, large-amplitude, oscillations and the subsequent conformational disorders 
of the chains are investigated. A crystalline field that confines the chain is treated by the molecular field 
approximation, and assumed to be cylindrical in this work. A production type simulation is adopted 
taking into account rigorous statistical weights for each sample conformation. Both the rotational 
isomeric model and the continuous rotation model of chain conformation are considered. By averaging 
over 104-8 x 104 chains, mean-square end-to-end distance, fractions of gauche and trans states and a 
detailed distribution of internal rotation angle are obtained. The effects of temperature and pressure on 
the conformation of the chain in the crystals are also simulated. 
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INTRODUCTION 

In polymer crystals, molecular motions with large ampli- 
tude, and inevitably unharmonic, oscillation of internal 
rotation angles are known to be the origins of various 
phenomena, namely dielectric relaxation, crystalline 
phase transition, chain diffusion along its axis, etc. The 
chains in such large-amplitude motions are in a state of 
conformational disorder. 

The geometry and the energetics of the conformational 
disorder have been studied by many workers. These 
studies were always done on the basis of particular, and 
more or less arbitrary, models of conformational disorder. 
No strict statistical mechanical calculations without 
recourse to the particular model has been done. This is 
mainly because of the mathematical difficulties in in- 
corporating the interchain interactions into the 
calculation. 

Monte Carlo calculations have frequently been used in 
conformational problems in polymer solutions. In these 
calculations, either a single chain free from interchain 
interaction or a many-chain system with relatively weak 
interchain interactions was considered. The same pro- 
cedure as that used in a many-chain system does not work 
well in the present case of polymeric crystals. 

The purpose of the present paper is to show that the 
Monte Carlo method used in the single-chain problem 
can be applied successfully to simulate conformational 
disorders in crystals by simplifying the interchain in- 
teractions and by estimating a rigorous statistical weight 
for each sample chain. 

The chains in the crystals are more or less straightened 
and laid parallel with each other. The interchain in- 
teraction can be treated, as a first approximation, by 
assuming that the chains are in cylindrical potential wells 
produced by neighbouring chains. This approximation is 
valid when we are concerned with a highly disordered 
system, such as the high-pressure phase of polyethylene to 
which we shall refer later in this paper or the high- 

temperature phase of polytetrafluoroethylene, where re- 
duction of interchain correlation due to the smearing 
effect of interchain interaction and the high symmetry of 
hexagonal packing of the chains allow the molecular field 
approximation with cylindrical potential to be used. 
Similar Monte Carlo calculations can be done for crystals 
of lower molecular packing symmetry, such as or- 
thorhombic polyethylene crystal, only by modifying the 
interchain potential. The application of the Monte Carlo 
method to simulate the behaviour of a chain in the crystal 
is scarcely found in the literature. It will give us an exact 
solution of the non-linear problem of chain conformation 
without recourse to any particular model. 

CALCULATION METHOD 

Monte Carlo calculations used in the studies of the 
conformations of polymers in solution are divided into 
two types. One is a method used, for example, in the recent 
work by Curro 1, where a successive sample conformation 
of the chain is generated by changing one internal rotation 
angle at a time. This method is analogous to the original 
Monte Carlo calculation by Metropolis et  al. first applied 
to physical problems. The other type is that used by 
Rosenbluth et  al. 2 Each sample chain is generated by 
attaching one structural unit after another till whole chain 
is completed. According to the terminology used by 
Teramoto et  al. 3, this is called a simulation of'production 
type'. 

A difficulty in applying the former method to dense 
systems is easily recognized. Strong intermolecular in- 
teractions make most of the successively generated chain 
conformations high-energy ones, which contribute little 
to the results. The method we shall apply is the latter 
production type one. For brevity of discussion in this 
section, the method of computation is explained for the 
rotational isomeric model. Extension to the more general 
case of the continuous rotation model, which is treated in 
the last section of this paper, is easy and direct. 
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Figure 1 A molecular chain in cylindrical potential d~ (r). The 
positions of the first atom r 1 and the second atom t 2 are fixed as 
r l = (0 ,  0, 0.445) and t2=(1.25, 0, - 0 . 4 4 5 )  

Figure I shows a chain in a cylindrical potential. We 
construct the chain in the following way. We consider that 
the position of the first atom (rl) and that of the second 
atom ( rE)  a r e  fixed. Then the position of the ith atom (ri) is 
determined by i - 2  internal rotation angles (za,z 4 . . . . .  %) 
through the usual transformation method. Assuming that 
the positions of i - 1  atoms, and consequently i - 3  
internal rotation angles, are determined, we choose the 
value of the ith internal rotation angle % from three 
possibilities, namely _+ 120 ° and 0 ° corresponding to three 
rotational isomeric states, with a probability 
P i ( z 3 , ~ 4  . . . . .  ~ i -  l/'rgi) : 

P i ( , r3  . . . . .  T i_  1/'~i) = exp( - f l H i ) / Z i ( T ,  3 . . . . .  "ci-  1) 

Hi = E(zi) + E ( G + G - )  + E(excl.) + O(ri) 

Zi(za,'",zi- 1) = ~exp( - flHi) 
zl 

where E(zi) is the bond energy for internal rotation angle 
z i, E(G +G-)  and E(excl.) are extra energies due to bond 
sequence of opposite senses of gauche and to the excluded 
volume effect respectively, and ~(rt) is an intermolecular 
potential energy of ith atom. The probability Pi is 
normalized to unity for each i, and the normalization 
constant is expressed as Z i. 

By attaching one atom after another in this way, we can 
construct a whole chain, whose internal rotation angles 
are z3,z4 . . . . .  TN, with probability P(z3,z4 . . . . .  zN): 

N 

P(za,z4 . . . . .  ZN)  = I - [  Pi( ' t '3  . . . . .  "~i- 1 /T i )  
i = 3  

= e x p [ -  flH(v)]/Z(v) v = (za,'r 4, . . . .  Z/v) 
(1) 

where H = X H i is the total H~,mi~nian of the chain, Z is 
defined as Z = II Zi, and fl is the reciprocal of the thermal 
energy. 

As seen in equation (1), the probability P does not 
correspond to a probability distribution at thermal 
equilibrium. A thermal average of any physical quantity A 
over a Boltzmann distribution is given as follows: 

(,4 \ = ~vA(v)exp[ - fill(v)] 
- /  ~ v e x p [ -  flH(v)] 

~,,P(v)Z(v)A(v) 
~,~P(v)Z(v) 

( A Z ) '  
(z)' (2) 

where ( ) '  represents an average over the distribution 
P(v) in equation (1). In this way a thermal average of any 
quantity ( A )  can be obtained from the average over all 
conformations ( ~' generated through equation (1). 

The computation was done for the chain composed of 
30 atoms (N = 30), whose bond length r and bond angle O 
were taken as r = 1.54 and 0 = 109.47 ° (the value for the 
diamond lattice). The extra energies E(G÷G -) and 
E(excl.) were assumed to be infinitely large, which means a 
complete rejection of the bond sequence G ÷ G  - and the 
chain overlap. The average ( ) '  in equation (2) was 
obtained by the average over 104-8 x 104 chains accord- 
ing to whether the convergence was fast or slow. 

In this study, the intermolecular potential Off) is 
assumed to be quadratic: O(r) = Gr2/2. Similar calculation 
can be done for any arbitrary function Off). The effect of 
varied functional form for Off) on the conformation of the 
chain in the crystal is a subject of future studies. 

RESULTS AND DISCUSSIONS 

Rotational isomeric model 
First we performed a calculation for the rotational 

isomeric model of chain conformation, where internal 
rotation angles {z} are allowed to take values 0 ° to _ 120 ° 
corresponding to trans and gauche states respectively. As 
shown later in this paper, the rotational isomeric model 
does not reproduce well a real conformation of the chain 
in the crystals, where internal rotation angles are con- 
sidered to deviate seriously from those of the rotational 
isomeric model. This model, however, requires relatively 
short CPU time of computation, and therefore is available 
in obtaining the overall view of the behaviour of the chain. 
The energy difference between trans and gauche was 
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Figure 2 Mean-square end-to-end distances at 300 K (O)  and 
at 500 K (©) ,  and the degree of f luctuation of end-to-end 
distance at 300 K ( A )  vs. G for the rotational isomeric model 
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Figure 3 The fraction of trans and gauche bonds vs. G at 300 K 
for the rotational isomeric model 
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assumed to be 530 cal mol - l :E(0  ° )=0  cal mol-1,  and 
E( + 120 °) = 530 cal mol -  1. 

Figure 2 shows a change of the mean-square end-to-end 
distance (R  z) with parameter G of interchain potential at 
300K and 5OOK. The value of (R  2) at 3OOK increases 
rapidly from about 400 A 2 for the coiled state at G =0  to 
1330 A 2 for the extended state at G "~ 500. We note that the 
effective radius ro of the cylindrical potential O(r) = Gr2/2 
can be estimated from Gr~/2 = kT. The value of G = 500 
means a cylindrical potential with effective radius r e = 1.5 
A, which is of the order of one bond length. 

A degree of thermal fluctuation of squared end-to-end 
distance R 2, estimated from the statistical error of the 
average (R  2) over 104 chains, is also plotted in Figure 2. 
The fluctuation has a sharp maximum aroung G = 150, 
where the chain shows a rapid change from disordered 
coiled state to regular 2-1 helical state. This seems to 
correspond to an increase of fluctuation which is generally 
observed near the phase transition point. 

Figure 3 shows the fraction of trans and gauche bonds 
vs. G. The fraction of #auche bonds decreases from about 
35~ at G = 0  to about 0,3~ at G = 800. At G = 800, (R  2) is 
estimated to be 1323 A 2, which means a contraction of 
fibre period of about 0.26~. The observed contraction of 

fibre period for polyethylene is about 0.3~o at 3OOK. The 
calculated conformation at G = 800 at 300K is, therefore, 
considered to correspond to that of polyethylene mo- 
lecule at 300K at atmospheric pressure, as far as the 
rotational isomeric model is concerned. The calculated 
value of 0.3~o for the gauche fraction at 300K shows a 
precence of the order of one defect per stem. 

As described before, the rotational isomeric model is 
not a correct picture of the chain conformation in the 
crystal, therefore for large G. The chain conformation for 
small G is, however, well represented by the rotational 
isomeric model as described later. Figure 4 shows the 
changes of (R  2) with temperature for small values of G. 
At G =0,  (R 2) shows a steep descent at 100K from that of 
an ordered 2-1 helix to that of a disordered coil: the helix- 
coil transition. With the increase of G, the change of (R 2) 
becomes gradual. A sigmoidal decrease of (R 2), however, 
shows that the change o f ( R  2) for large G can be regarded 
as a diffuse helix-coil transition of the chain in a 
cylindrical potential. A diffuse transition observed in 
PTFE around 150°C is considered to correspond to such 
a diffuse transition 4. 

Continuous rotation model 
As described before, the rotational isomeric model 

suffers a serious disadvantage, in that the usual picture of 
molecular motion is lost in terms of oscillation of internal 
rotation angles. We now consider a continuous rotation 
model, in which the internal rotation angles take con- 
tinuous values from - 180 ° to + 180 °, instead of discrete 
values of 0 ° and ___ 120 ° as in the rotational isomeric 
model. In carrying out the computation, however, we 
must limit the number of internal rotation angles within 
executable range. In the present study, 20 different 
internal rotation angles were considered: 

q =  - 180 ° + (360°/20)(i - 1) (i= 1-20) 

Figure 5 shows the energy of internal rotation, E(z), 
assumed in this study due to the first-order interaction. 
Similarly to the calculation for rotational isomeric model, 

i • . . . .  r I t - [  • 

I I i I I n i 

200  4 0 0  600  

Temperature (K) 

Changes of mean-square end-to-end distance (R 2) Figure 4 
with temperature for G = 0 (O) ,  G = 25 (O) ,  G = 100 (A ) ,  G = 
200 (A )  and G = 600 (E]) for the rotational isomeric model 
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Figure 5 Energies of internal rotation E(z) for the cont inuous 
rotation model (a), and for the restricted rotation model (b) 

the second-order interaction which forbids a sequence of 
gauche bonds of opposite sense and the excluded volume 
effect were taken into account. 

The change of (R 2) with G at 300K and 550K are 
shown in Figure 6. The value of (R 2) changes gradually 
with G, in contrast to the result for the rotational isomeric 
model. 

A contraction of fibre period with increase of tempera- 
ture has often been observed in polymer crystals. For 
example, the fibre period of polyethylene crystal decreases 
by about 0.1% per 100K rise. The phenomenon has been 
explained either by the thermal oscillation of the internal 
rotation angles around the trans state or by the excitation 
of conformational defects with large deviation of internal 
rotation angles from the trans state. In order to separate 
these two contributions, we examined the behaviour of 

2 ( ~.R of the chain with. restrictec~..p°tential of internal 
rotation (Figure 5b), which allows oscillation around the 
trans state only. The results for the chain, (R2>restr, at 
300K and 550K are also shown in Figure 6. The difference 
between (R 2) for the continuous rotation model and that 
for the restricted rotation model shows the contribution 
of bonds around the gauche state, which we hereafter call 
"gauche bond' for brevity. At small G, the contraction of 
the chain is due mainly to the excitation of gauche bonds. 
The contribution of the gauche bonds decreases with 
increase of G and becomes almost zero at G = 5000 for 
300K for example. The data for (R2), (R2)restr, and (C)  
at 300K and 550K are listed in Table I and Table 2, where 

.(C) is the average fibre period. The observed contraction 
of fibre period of 0.3% for polyethylene crystal at room 
temperature shows a corresponding value of G of more 
than 5000 cal mol-1 A-2 in the continuous rotation 
model. The observed contraction of fibre period is, 
therefore, considered to come almost entirely from the 
oscillation around the trans state. 
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Figure 6 Changes of (R 2) for  the cont inuous rotation model 
(0 )  and (R2)res. for the restricted rotation model (O) vs. G at 
(a) 300 K and at (b) 550 K 

Table I The values of (f12), (C) and (R2)rest r for various values 
of G at 300K 

G (R 2) (C) (R2)restr 
(ca l  m o 1 - 1  A - 2 )  ( A  2) ( A )  (A 2) 

0 
50 

100 
200 
300 
500 

1000 
2000 
5000 

10 000 
co* 

376 - 1064 
696 -- -- 
800 -- 1269 
919 -- 1270 
850 - 1282 

1066 2.201 1288 
1242 2.404 1299 
1294 2.469 1310 
1315 2.498 1313 
1327 - 1325 
1330 2.515 1330 

* Limit ing values of  (R2),  (C) and (R2)restr for  fu l ly  extended 
conformat ion 

Table 2 The values of  (R2),  (C) and 
at 550K 

( R2>rest r for  various values of  G 

G (R 2) (C> (R2)restr 
(cal mol -1 A -2) (A 2) (A) (A 2) 

0 308 - 940 
500 801 1.757 1246 

1000 948 1.929 1270 
2000 1124 2.259 1287 
3000 1226 2.388 1295 

= *  1330 2.515 1330 

io 4 

IO 4 

* Limit ing values of  (R2), 
conformat ion 

(C) and (R2)rest r for  fu l ly  extended 
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=3000 (O) .  Since p(r)  is a symmetric function of r, p ( r )=  
p( - z), the distributions are plotted for positive values of r only 

A harmonic oscillation of bonds would be completely 
determined by its root-mean-square deviation. When we 
are considering unharmonic oscillation, however, the 
detailed distribution of the internal rotation angles is 
necessary. Figure 7 shows the distribution of internal 
rotation angles for various values of G at 300K. For small 
values of G, G =0 for example, the distribution indicates 
clear peaks around trans and gauche positions. The 
rotational isomeric model is, therefore, a reasonable 
model for small values of G, especially at low temperature. 
With the increase of interchain potential G, the distri- 
bution around gauche, especially on the high-angle side of 
the peak, becomes suppressed, and the position of the 
gauche peak shows a remarkable shift to lower angle. At 
large G, the excitation of large internal rotation requires 
large interchain energy. This leads to the observed shift of 
gauche peak from the usual angle of 120 ° at G = 0 to lower 
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angles at large G. In this way it is shown that a simple 
picture of chain conformation based on the rotational 
isomeric model must be discarded for a chain in the 
crystal. The halfwidth, Az, of the peak around the trans 
state decreases with increase of G, from Az = _ 23 ° at G 
= 0  to Az= _+12 ° at G=5000. A low-frequency acoustic 
mode of vibration of the single chain is considered to be 
suppressed at large G by .the increase of interchain 
interactions. 

Figure 8 shows the distribution of the internal rotation 
angles at 550K. Both peaks around trans and gauche 
positions are significantly broadened. At G = 0, for exa- 
mple, both peaks broaden about 1.2 times those at G = 0 
at 300K, filling the valley between the two peaks. 

It is well known that polyethylene has an anomalous 
phase at pressures and temperatures higher than about 
4 kbar and 240°C, in which the chains have a highly 
disordered conformation but still retain liquid-crystalline 
order 5- s. The conformation of the chain in this phase was 
studied by X-ray diffraction on the basis of a particular 
model of the disordered conformation s . The present 
simulation enables us to examine the conformation in 
detail in this phase without recourse to any particular 
model of the disordered conformation. The observed 
contraction of the fibre period is about 5~  in this phase s, 
from which the value of G can be estimated as G 
-- 3000 cal mol - 1 A-  2 (Table 2). The detailed distribution 
of angles z in this high-pressure phase simulated in this 
way is, therefore, given by the graph for G -- 3000 at 550K 
in Figure 8. 

As seen in the graph for G = 3000 in Figure 8, large- 
amplitude oscillation around trans is observed: Az= 
___25 ° . Nevertheless, the excitation of gauche bond is 
scarce and no subpeak a round  gauche is found. This is 

because of the strong interchain interactions under high 
pressure. The effect of high pressure and high temperature 
on the conformation of the chain in the crystal is thus 
clarified: it suppresses the excitation of bonds largely 
deviated from trans and gives rise to the large-amplitude 
oscillations around trans. 

CO N CLU S IO N  

By applying the Monte Carlo method to a chain in a 
cylindrical potential field, various behaviours of the chain 
were simulated. The remarkable usefulness of the method 
is now evident. To study the intrachain short-range order 
of the disordered chain, the effects of varying functional 
form of interchain potential O(r) and energy of internal 
rotation E(z), etc., are the subjects of future studies. 
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